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Inspection and Repair Decisions for
Hydraulic Structures
under Symmetric Deterioration*

Jan M. van Noortwijk!

June 18, 1992

Abstract

In this report we will focus on minimising the cost due to inspection and repair
of hydraulic structures. The optimisation is based on symmetric properties of
the underlying physical deterioration process: i.e. the damages per time-unit are
exchangeable and the probabilities of preventive repair and failure are obtained
by conditioning on the average amount of deterioration with regard to a finite or
an infinite time-horizon. By introducing a prior for the average deterioration per
time-unit we can account for uncertainty in the decision problems. Advantage
of our Bayesian approach are that we base our mathematical models on an ob-
servable quantity, namely the damage, and, surprisingly, that our results are just
sums of products which can be easily evaluated. T'wo examples from the field of
bydraulic engincering ave studicd: determining a preventive repair interval when
a safety norm is given and a cost-optimal periodic inspection rate if there is a
possibility for a preventive repair during each inspection.

*This work was partly sponsored by Dellt Hydraulics, Delft, The Netherlands, under Project
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and Operations Research of the University of California at Berkeley, U.S.A. The visit was partly
supported by the Netherlands Organization for Scientific Research (N.W.0.). The suthor gratefully
acknowledges the helplul comments of Richard E. Barlow, Roger M. Cooke, Matthijs Kok and Max
B. Mendel.

tDelft University of Technology, Faculty of Techaical Mathematics & Informatics, P.O. Box 5031,
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1 Introduction

This report will discuss the subject of preventive maintenance of hydraulic structures.
The problem emerges from the field of structural engineering, although the same ap-
proach can be applied within the field of mechanical and electrical engineering,.

Preventive maintenance of hydraulic structures consists mainly of two parts: in-
spection and repair. A repair can either be a preventive repair (before failure) or a
corrective repair (after failure). Inspection is often needed, because it is not possible
to observe continuously the physical condition of a structure, e.g. the height of a dyke
or the strength of a bridge. For an extensive problem description about maintenance
of hydraulic structures see van Noortwijk [11].

Inspection and repair entail substantial costs. Money can be saved by weighing
inspection cost on one hand with repair and failure cost on the other. A high inspection
rate will result in high inspection cost and low repair and failure cost. No inspection at
all will surely lead to failure and high cost. An optimal or near-optimal maintenance
policy lies somewhere in between. In practice the failure cost is often much higher than
the cost of preventive repair, where failure cost includes both cost of corrective repair
and other public or private losses due to failure.

To lower the expected sum of inspection, preventive repair and failure cost a wide
variety of mathematical models has been built. For surveys see Barlow & Proschan [4],
Pierskalla & Voelker [12], Sherif & Smith {13] and Sherif (14]. In most cases inspection
and repair are modelled in a probabilistic way. Quite popular are maintenance models
based on lifetime distributions assuming that the deterioration law of a structure is
Markovian. A problem in practice is to get data for either a lifetime distribution or
the trausition probabilities of a Markov chain (where a transition is a change of the
structure’s physical condition). Unfortunately, ouly a few applications can be found.

Instead of assuming a lifetime distribution or a Markov chain, we will follow &
different approach. As in structural engineering we will define a failure as the event
at which a structure's resistance drops below the stress. We will focus on stochastic
resistance and a constant deterministic stress.

The resistance will be modelled with damages appearing per time-unit. The ad-
vantage of this approach is that damage is observable, while a lifetime or a transition
probability matrix is not. Furthermore we do not make the usual assumption of mu-
tual independent damages, but base our proposition on the physics and the decision
problem.

Our Bayesian approach is applicable for decision problems, where the joint proba-
bility density of the amounts of damage per time-unit is invariant uuder permutation
and depends on the average amount of damage, while considering a finite or infinite
time-liorizon. These propertics are known as exchangeability and l; symmetry respec-




tively. They will be discussed in section 2 and were first applied to decision problems
by Mendel [9, 10].

An advantage of the discretisation in time-units and the application of exchange-
ability and l; symmetry is that the calculation of the probabilities of preventive repair
and failure becomes tractable. All probakbilities can be expressed in sums and prod-
ucts. Moreover, the Bayesian modelling is based on the underlying physics. In general
a classical Bayesian provides a prior for every uncertain parameter in a probabilistic
problem formulation, without accounting for ways to determine these priors or even to
make sure whether the parameter is observable in practice.

Concerning to the inspections we will focus on a periodic inspection policy, although
Barlow, Hunter & Proschan [2] proved that a constant inspection rate is not optimal
when the lifetime distribution is not exponential. Our failure distribution based on
accumulated damages will not be exponential. In practice a periodic inspection policy
is often chosen, because it is easier to plan manpower. In the future it is interesting to
look at a resistance dependent inspection policy.

Two examples will be studied in section 3.

First, we focus on determining a preveative repair interval (without needed or
possible inspection), while the failure probability should not exceed a certain safety
norm.

Second, we study an inspection model which is an extension of the basic model of
Barlow, Hunter & Proschan [2]. It includes periodic inspection, while at an inspection
a preventive repair only will be executed if the resistance is below a preventive repair
level. If an inspection is scheduled too late the structure can pass into the failed state.
A large amount of money is involved when this happens. Passing the preventive repair
level can only be noted through inspection, whereas a failure will be noted immediately,
like an inundation of an area protected with flood defences against the sea. The time-
horizon can be finite and the decision variable is the inspection rate.

All techuical proofs can be found in the Appeundix.




Notation

r
R
R

T ep Koy

Cost of failure.

Cost of one inspection.

Cost of preventive repair.

Expected sum of inspection, preventive repair and failure cost.
Amount of damage in the [th time-unit.
Length of inspection interval.
Time-horizon.

Safety probability norm.

Resistance at time zero.

Resistance or strength.

Resistance in time-unit n.

Failure.

Constant stress or failure level.

Stress, load or action effect.

Length of time-unit.

Average amount of damage per time-unit.
Preventive repair leval.




2 Assumptions and definitions

In the field of mechanical and electrical engineering one often considers lifetime dis-
tributions to model the appearance of failure in a system, e.g. a motor or switch is
working or not, whereas in the area of structural engineering failure is decomposed to
comparing a structure’s resistance or strength R with its stress, load or action effect S
(see e.g. Ang & Tang [1] and [6]). A structure is said to fail if its resistance is below
the stress, i.e. if the so-called performance function R — S is below zero. In general
both resistance and stress are unknown functions of time and moreover not necessarily
independent. In this paper we will restrict ourselves with stochastic resistance and
deterministic stress. This means that a structure will fail if its resistance R is below a
constant failure level s.

In time the strength of a structure will degrade due to deterioration. Since deteri-
oration mostly is observed according to a particular time-unit, we subdivide the time-
axis (0, 90) into time-units ((n - 1)A, nA}, with n = 1,2,3,... and time-unit length A.
Often a structure is planned to function for a finite time-interval, say (0, NA]. If the
structure has met its needs it will be replaced at NA. In general this replacement will
be an improvement. With the passage of time new techniques come available and can
result in a higher original resistance and a lower deterioration rate. In our terminology
an improvement differs from the maintenance action preventive repair.

" Suppose that in time-unit n the structure's resistance suffers a stochastic degra-
dation Dy,, Dy 2 0, aud assume the resistance at time zero equals r, where r > s.
Cousequently, the resistance in time-unit n can be written as

Ry=r=Y D n=1,...,N. (1)

I=]

Sce also figure 1.

We study a physical deterioration process, where the expected resistance is linear
decreasing with time. Or in other words: the expected amounts of damage per time-
unit are equal to cach other. Examples within the field of hydraulic engincering are
according to Vrijling, Klatter & Kuiper [15] settlement! and the behaviour of a dune
under the continuous action of waves and wind. Other examples are corrosion of
underwater pipelines and the scour-depth near underwater footings of a bridge (Taung
[personal communication)).

Instead of supposing independence we make weaker assumptions: i.e. exchange-
ability and I} symmetry. '

'When & civil structure is built on clay some water present in the clay will be pressed out with
passage of tiwe, causing sinking of the structure.

(447




The vector Dy of N uncertain amounts of damages,
Dy = (Dy,...,Dn), (2)

is assurned to be ezchangeable. Dy is exchangeable if the probability density is invariant
under all N! permutations of the coordinates, i.e. if

Pr{D1 =51,...,DN =‘SN} = Pt{D; =6,1,...,DN =6,N}, (3)

where # € N! is any permutation of 1,...,N. The variables of an infinite sequence
Do, where Dy, = limy_.o, Dy, are exchangeable if Dy, ..., D, are exchangeable for
each n (see Mendel [10)]).

If the coordinates of Dy are not exchangeable Mendel [9] provides a way tc trans-
form them in such a way that they are exchangeable. Also if the expected accumulated
degradation is not linear in time, but exponential for example, it would be possible to
apply exchangeability. In a subsequent paper we will discuss also nonlinear expected
deterioration.

In all examples it is assumed that the decision-maker has subjective information
about the average amount of damage determived with regard to the time-horizon
(0, NA). Consequently we condition the probabxhty of 6y,...,0y on the average amount
of deterioration over (0, NA}, i.e. on .b. S_},_“ Dy =0. Gwen a constant value of the sum

the probability deusity of the underlying amounts of damages is furthermore assumed
to be uniform or

Pl‘{D1 =68y...,Dn =05

Fy=0}=
NEDI } (4)

= Pl‘{Dl-“SE;,. p:-&ﬂ
el

for (&1,...,0n), (5,. ‘es ,5~) € Rf. Dy, ..., Dy are now said to be I, symmetric® or |
isotropic (see Mendel [10] for details). This leads to a distribution uniform on simplices.

"The likelihood of realisations §y, ..., 8,, 1 € n € N, given that Dy is {; symmetric3,
can be obtained by integrating the uniform distribution out on the simplex

N _
E D)= N#§ (8)

i)

3, symmetric stochastic vatiables D, ..., Dy have a uniforw distribution on i, D = N9 (see
Meadel (10)).

3, symmetry implies exchangeability, on the other hand, sn exchangeable measure which is
symuietric in two coordinates is ) symuetric.




over the (n + 1)th through the Nth amount of damage. This can be achieved by
application of the Dirichlet integral and results in

N E“=i 5 N-n-1 .
IN(GI, se ,6,,|0) = ( (NO)") [ Ilvg l] Il0.N9] ():1:1 61) ’ (6)
where (N — 1), is the usual shorthand for (N —1)-+-(N =1 =n+1). Li.4(z) =1 for
z € [a, b] and equals to zero elsewhere. For a proof of (6) see Mendel [10).

An interesting case arises when taking the limit for NV to infinity. Then we obtain
a product of n exponentials,

Iéi_rgolN(alr“ * ﬂsﬂla) = 100(611 e ,6‘.'0) =

1 116
= ’éie"p{“aal ‘}I(O.m)(2?=161)~ (7

This result coincides with the classical Bayesian exponential model, where the coordi-
nates of D, are mutually independent and identically exponentially distributed random
variables with mean 6.

The probability density of §;,. .., §, can be found by formulating a finite de Finetti-
type representation

P61, ..., 5a) = /: (b1, 8al0)a(0) B, ()

where 7(9) is a prior density, which is uniquely determined by the probability density
of 8y,...,64 (see de Finetti [7] and Barlow & Mendel [3]). Mendel [10] provides a way
to obtain a prior for the infinite case. He gots the inverted gamumna distribution

W0 =gt en{-LHeae) @

p,r > 0, where the parameters p and r may be based on data and/or subjective
opinions of experts. Aun advantage of this prior is that the caleulations lead to closed-
form results in both the finite and infinite case.

By using the prior (9) in the representation (8) we get, after applying the binomial
formula, for finite NV

Por,... b)) = ) |
S (g e
[_.

N-n-}
=0
Nen-~1 1
i N
7

i

i 6,] M (10)
i=

(N-l) N-n-1
R ( ) T




and for taking the limit of N to infinity

, _T(n+r) 3
hl'ggop(ala srey 6ﬂ) = F(T) U‘ + E?:zl 61]“+' (11)

With (6), (9) and (10), for finite N, and with (7), (9) and (11), for infinite N, we
can derive the posterior density of the expected amount of damage per time-unit by
updating our prior with available data 4y, ..., 0, after applying Bayes' theorem:

_ 14\'(61, tot ,6""0)11'(0)

70|61, ,6m) = ) (12)
Note that for the infinite case the posterior is again an inverted gamma distribution
with parameters p + 3,2, § and r + m. That is why the inverted gamma distribution
is said to be natural conjugate to our likelihood. For calculations in detail see Cooke,
Misiewicz & Mendel {5]. They also deal with censored data. We get this kind of data
in the case of imperfect inspection, i.e. the actual resistance will be determined with
uncertainty.

4




3 Decision problems from hydraulic engineering

In this section we will apply the theory developed in the former section to two examples
taken from the field of hydraulic engineering. Subsequently the decision variables per
act will be: the preventive repair interval with no inspection (§ 3.1) and the inspection
rate with given preventive repair level (§ 3.2).

3.1 Preventive repair interval with no inspection

In some cases a decision maker needs to know when he has to carry out a preventive
repair, while there is no need or no possibility for inspecting the structure. The ex-
pected preventive repair time is fully determined by a certain safety norm, laid down .
by the government. An example is the minimal permitted probability of inundation
of a region protected by a dyke ring in the Netherlands (see [6]). Assuming that the
cost of preventive repair is constant in the sense that it is fully determined by having
the maintenance people and the right materials at your disposal and not by the actual
amount of degradation (provided that it has not been failed), so a dyke manager wants
to postpone preveutive maintenance as long as possible.

Suppose Paem(n) is the safety probability norm provided for each time-interval
(0,n4], 1 £n £ N, where Pogm(n) is strictly aondecreasiug in n. The probability of
failure should not exceed Pygew(n) or with (1)

Pr{R.<s}=Pr{ZD¢>r—s}<Pm(n). n=1,...,N, (13)

t=]

Hence a preventive repair should bs carried out just before that n, where the probability
of failure exceeds the safety norm.
The probability of failure in time-interval n can be calculated with (7) as follows:

Pr{ZD,)r—w} =

#=}

- 1-/:02’({%0;57'-3

w s feTih |
- 1--/0=0./;|=0”‘]£ lc"'(éh“‘.(s.lo)ﬂ’(O)déu-..d‘sldg. (l")

» =0

‘\!

%20,:0}:(9)«10:
N Y |

with r — 5 € N0 and #(0) the inverted gamma distribution.
With theorem 3 of the Appeudix it follows that, for the finite case,

" N
Pr legr—s ‘LZDI=0 =
'evlnl

i=]

9




o e e

n=1,...,N,...,r -5 < N0, and with theorem 8 of the Appendix
Yy Di=0)=
=l
r— syi-! r—s
Z(l—l)' ] exl’{" ] }» (16)

=1

hm Pr{ZD; <r-s
=1

n=12..., for N = oco.

(15) is a beta distribution in (r — s)/N@ with parameters n and N —n (see theorem
3 of the Appendix). The latter is the gamma distribution in (r — 5)/8 with parameters
n and 1, which is exactly the distribution of the sum of n mutually independent and
identically exponentially distributed variables with mean 4.

The mean of 33y Dy, the amount of damage in time-interval (Q,nA], equals nd
in both the finite and infinite case. As we sce the expected resistance is indeed linear
decreasing in time, The variance of XJM Dy in case of the beta distribution (finite
time-horizon) is §£32n6%, while the variance equals n6? for the gamma distribution
(infinite ume-honzon) The variance for ﬁmte N is zero if & = N, which is obviously
correct since we are conditioning on & X2, Dy = 0.

For finite N the discrote lifetime probability density function, given 8, is a binomial
distribution (see theorem 2 of the Appendix),

Pr{ED,(znZD,>z NED, }

(1Y) lal =}

(n_l)[l "‘5""['“3""', (17)

forn = 1,...,N, r - s £ N0 and with parameters (r — s)/N0 and N. For infinite
N this lifehme probability deusity approachics a Poisson distribution (sce theorem ¥ of
the Appendix):

Jim Pr{ZD; <r-sn§:D.>r-s
1=}

‘VED' }

r— syl r—s
"(n-l)! 0 exp{—-_ 6 }' (18)

for n = 1,2,... and parameter (r — s)/0. The meau life is 1 + ¥71(r — 5)/6 aud
L 4 (r — 5)/0 respectively.

10




preventive repair

—_— failure

] ] | | ] 1 i 1 | | |
0 A 2A 3A 4A 5A 65 7A 8A 9A 10A -+ NA
1 T T

Inspection Inspection Inspection

Figure 1: The (discretised) resistance R, in time-unit n with inspection interval length
k = 3. At the first inspection (t=3A) R3 > p, hence no preventive repair takes place.
At the second inspection s < Rg < p, so there is no failure, but a preventive repair is
needed. The total cost is 2¢; 4 cp. Suppose k = 9 then there would have been a failure
in the first inspection interval with cost cp. '
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3.2 Inspection rate with given preventive repair level

In structural engineering corrective repairs and the collateral losses are too expensive
and consequently need to be avoided by well planned inspections and preventive repairs.
In this example inspection is needed to know whether we need to carry out a preventive
repair. Object of study is to obtain that inspection rate leading to minimal expected
cost. A high inspection rate will avoid a failure (almost surely), but entails high
inspection cost. No inspection at all leads to failure cost, so the optimum inspection
rate lies in between these two extremes.

Inspection will be executed with a constant rate: with an inspection interval of k
times A, where k can be chosen from 1,...,N. Hence the inspection times form the
set

jk4, 3 =1(1)K, (19)

where K = |N/k] is the greatest integer less than or equal to N/k. Furthermore,
we are dealing with perfect inspection, i.e. the actual resistance R can be determined
without any uncertainty. Inspection takes negligible time and does not degrade the
structure. Each inspection costs c;.

During an inspection we now have the possibility to execute a preventive repair, In
case of no failure there are two possible actions depending on the inspected conditicn:
no repair or preventive repair. We will assume that a preventive repair takes place if
the structure’s resistance is below a certain preventive repair level, denoted by p, where
s < p < r, given by the decision maker. A preventive repair will be executed at the
end of the jth inspection interval, i.e. at time jk4, if

Ry <p. (20)

There will be no action if Ry is greater than or equal to p. See also figure 1. Future
research will determine the preventive repair level p for a finite and infinite time-
horizon.

If the preventive repair level is reached the structure need not yet be in the failed
condition. However with a low inspection rate a maintenance action can be tco late:
a disastrous failure can happen. A failure will be noted immediately, e.g. inundation,
while exceedence of the preventive repair level can only be known through inspection.

Both the failure cost ¢ and preventive repair cost cp are constant, where cp < ¢p.
Note that if cp would have been greater than or equal to ¢y then the optimal value of
k would have been N. The cost function to minimise the inspection, preveutive repair
and failure cost is given in (21).

12




K

ck) = E[jc; +Cp]Pr{R(j_1)k 2pNs<Riy< p} +
J—l

+Z lier +cr] Pr {Ro-m 2p0O R, < s} +

=1
+[Kcr + cp|Pr{Rkr 2 pN Ry < s}, (21)
where
Pr{R«r 2 pN Ry <s}=
= i Pr{Rki 2 pNRp—y 2 sN R, < s}. (22)
n=Kk+1

Note that the model is an extension of the basic model of Barlow, Hunter &
Proschan [2] and is also studied by Gijsbers [8]. The latter assumes a normal dis-
tribution for R(t) (in case of a continuous model) and does not give analytical results.
Under these assumptions the civil structure actually has a probability to improve!

Now we are concerned with calculating the probabilities in (21) and (22). For
technical details we refer to the Appendix.

By theorem 7 of the Appendix it follows that the probability of preventive repair
at the jth inspection, given the structure has not been preventively repaired at the
former inspection (i.e. at time (j - 1)A), conditional on 6, equals

1 N
Pr{ft’g‘_;)‘,ans SRjk<PI 'ﬁZD{:G} o=
le=1

7""3"‘" U—l)k jk =1\ [p = s}k r-—p‘“l
J& 1 [ .ux i-1 ] ~ol ot
* {[ NO ] 7N B (23)
where r — s < NO.
In a similar manner we can get with theorem 5 of the Appendix the probability of

failure during the jtb inspection interval, given 8, while a preventive repair was not
needed at the (5 — 1)th inspection:

1 N
Pl‘{ffu_l)&zpﬂn‘,‘k<8| —N—ED‘=0} =

i=1

13




£ (00 )b

a=(j-1)k+1

{[r—s n-1 "'_‘1"‘( ) p—s]“"' r—p "‘}, (24)

r —8 < N6. The probability of failure in the time-interval from the last inspection
until the end of the time-horizon, given in (22), can be calculated by summing the
failure probabilities over the time-units (Kk +1)A,...,NA, :

As in (14) we can take the inverted gamma distribution as a prior 7(8) to calculate
the posterior probabilities in (21). As a result we have closed-form expressions.

For the infinite case the probability of preventive repair in the jth inspection in-
terval, conditional on @, is with theorem 12 of the Appendix

hm Pr{R(,-l)g>pns<Rk<p! ED; }

1 [T -3 jk—l (j"l)k J’h 1 [P -3 sk—s r— p]l-l
Gk-1L 8 .=1

ool 5o 55 ®

and the probability of failure in the same interval, given 8, is

hl'.i_l.T‘}oPr{R(,_m > pﬂij<8‘ NZ_}D( 0} =
ik

r-—8
= e X § e §
nu(;g)m(""l)! p{ 6 }

{[r-—s"“ “:“(n— )[p 5]"" ;”]H}, (26)

according to theorem 11 of the Appendix.

The optimal value of C(k) can be found by minimising over k = 1,..., N, The
restriction that & > 1 does not lead to big problems. If the optimum inspection interval
length will be lower than A, then our model is wrong and we need to subdivide the -
time-axis into smaller time-units.

As a result of symmetry in the detrioration process we are able to express the
probabilities of preventive repair and failure in closed-form results. Hence C(k) can be
evaluated easily for every &.

14




4 Conclusions

In this report we used symmetric properties of the deterioration process to build main-
tenance optimisation models. A consequence of the symmetry is that the expected
accumulated damage to a hydraulic structure is linear in time. The Bayesian approach
uses a prior for the average amount of damage with regard to a finite or infinite time-
horizon. The amounts of damage are assumed to be l; symmetric.

Advantages of the approach are that we base our model on an observable quantity.
Instead of a lifetime or a transition probability matrix we use the structure’s resistance
suffering stochastic deterioration in every time-unit. Furthermore it is possible to use
data to update our prior of the average amount of damage, both in case of perfect
and imperfect inspection. We used symmetry in the physics to simplify our model
considerably, while not assuming mutually independent damages.

We applied the Bayesian approach to two decision problems from the field of hy-
draulic engineering. The first one is concerned with determining a preventive repair
interval given a certain safety norm. The second is an inspection problem. How of-
ten do we have to inspect a hydraulic structure to ensure that the sum of expected
inspection, repair and failure costs is minimal?

The main advantage of the foregoing approach is that the model is not built on ad
hoc assumptions, while the probabilities of preventive repair and failure in a certain
(inspection) interval still can be expressed in closed-form results.

15




A Technical proofs

Theorem 1
I(n,z) = /= ‘/2—6l /"‘Em Ldby - dydty = =
’ 51=0J8; " al’
n=12...,2€ R,. 27
Proof:
I(n,z) is the classical multi-dimensional Dirichlet integral. a
Theorem 2
n-1
{zo, <anYDi>s| L3 D= }
=1 I=1 N =1
N-1 z 1N-n n-1
(n_x)[l*m] (7l - (28)

n=1,...,N,z £ N0,z € Ry, which is the binomial density with parameters z/N§
and N with ezpectation £=1(z/6) + 1.

Proof:
With Iy(6;,62,: -+, 6,]|0) given in (6) it follows that

n-1 n
Pr{le SzNY. D>z ZD; }

{e] =1 l=:!

2 * b l-l
B ~/6|==0 ‘/511':0 L m_zu-n IN('SI) 03, 6,;'0) dby s+ d&zdal

/z fm =Lt & N 1_ N-n 1_2?::1 2 R
§3=0

i

[ T 7 No ‘”“"'_‘”'

-5 A — Nen
/ /* T :N 1 N n+1[1_____
§1=0

i

s

dﬁu-l et dél

bu 1 z0

N-1 N- n+1 N-n  gn-l

= N [I‘Na] o1

(W)l Na]"" [l

where we used the result (27) in the last step but one. : - o
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Theorem 3

Pr{gD, ;n,_o}
- - E () bl Rl @)

n=1,...,N, z < Nb, z € Ry, which is the beta distribution in /NG with parameters
n and N —n.

Proof:
The proof follows directly from theorem 2:

Pr{iD;Sx ;D; }

i=1

n
= l—zPr{ED.,,SznZDm>x

i=1 m=1 m=1

=S (00) bl

n=1,...,N,z < NbO, z € R,.
We get the probability density function by differentiating (29) with respect to z:

Pr{)iD:f-“z‘ ZD: }

{=1 ll:l

= "fi'(’ﬁ',"“"-‘??)'[ M]N-u-x [Nl)]“-l 1

which is the beta density with parameters n and N - n, Q

N}:Dm-o}

msl

Theorem 4

J(G n,2,y)

/ N = / b /"“E"‘ 1d6, -+ - dfy
&y =0 §;=0 85410 $a =0

= :! [ - g( i ) (y - x)n—c'+lxi-l] ,

jgn-1,jn=12..,2<y<NbzyeR,. (30)
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Proof:

The integral can be determined by successively integrating out the variables §,, 6,-;,
.y O1.

J(G,n,z,y) =
= [ [ S / v Db /"'2":6‘ 1d6, -+ dby
& -0 §;=0 §i41=0 bu=0

3

z l=l V’Ehl 6‘ /y E{a] & 1 n-2
= . E 5 —g++-db
8§1=0 -/5, ~/5‘ § [y ! n 2 !

i+1=0 n--3=0 I=1

Il

H 3 n-j
ﬂl
/6;-0 /5,-0 (n J)l [y - 5:] dé;--+db,

I=1
2

“ha” /s-wom (v =7 +1)l J+1)' by - o]+ dbjer - dby +

i a~j+l
l-l
+]5“° ‘/‘:-l (“ -J + 1)! [y 26’] iy -+ - dby.

=1

The first integral can be solved by using (27) and becomes
’ (y — )i +igi-1

T+ DG =1 (31)
By successively solving the second integral we get:
(y=z)*%i=?  (y—a)-igl e ) n=1
(n—j+2)i(j - 2)! (n— 1)1 fs,.:o oA (32)

where we used (27) (j — 2) times. The last integral leads to

s -artan = -2,

n!

"
%T (33)

By summing (31), (32) and (33) and multiplying themn with nl/n! we sce immediately
that J(j,n, =, J) equals

e e

JEn-1,jn=12,..,2<y<No z,yeR,.
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Theorem 5

n-1 N
Pr ZD1<$HZD;<yﬂZD¢>y IEDz =40
=1 =1 =1 N =1

- () -5 (0 l)y )

j<n-1j3n=1..,Nz<y<Nbz,yeRy. (34)

Proof:
In evaluating (34) we use the likelihood ly(61, 82, -, 6,]0) derived in (6). The integral
can be determined by first integrating out the variable 4.

Instead of the notation (N — 1)« (N —1—n+1) we will use the usual shorthand
(N —=1),. In the last step but one we use J(j,n — 1, z,y), following theorem 4.

D
N?;}'}

n~-1
Pr{ZD; <zﬂED; < yﬂZD;>y

=1 1=1
. “Zc-; &y~ 2‘:_‘ 61 No-3 ol 6
- /6'850 -/6 ‘/; 41 =0 ! j "-Z?:]‘ 6) ‘N(al! 62’ u|9)d6u tes d&

"Shl & ”"2’(-! O'E' -‘6' (N l)n E?xl 61 N-n-i
-/631::0 /6 -/;J+x=0 ) -/&'-'W"E::l‘sl (Ng)n [1— N6 ] dau“d&l

T s =Dt =& (N -1), y Ve
-/1«0 4/5j ./6’*":0 ) ,‘/6..45:0 W [1 - 'ﬁ’b‘ d&n_x . 'dal

- G- e {""“I“Z(?_l)(” g H}

t==]

S CE i [ (o [

j€n=-1jn=1,...,NzLy< N zyeR,. a

19




Theorem 6

Pr{§D1<ngDz<y 1%0,:0}:
1= ZJ:( )[1 No]N_l [NO]l_ +

2 (V) - B ()

l-t

-l

j<n-=-1,jn=1,...,N,z<y<Nb,z,y e R,. (35)
Proof:
The proof follows from theorems 2 and 5:
3 n
Pre) Digsn) Di<y le
I=] =] ldl
j I-1
= I—EPr{ZDm$$ﬁ§:Dm>m ZDm—g}-i-
=1 me=l mz1 m::l
N
+2Pr{2D <xn§:D <ynZD.,.>y ;,ZD,,,ua}
I=5+1 m=] . mesl mel

= 1‘2(7:11) N@]Nwl[}\%]_

-
(1) (L

j€n=-Lin=1,...,NzSy< N, z,ye R,.
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Theorem 7

n-1
Pr{ZD;<anD¢<ynx<ZD;<y ZD{ }

1=1 I-l

- (RS0
A

j<n-1,4n=1,...,N,2<y< Nb,z,ye R,. (36)

Proof:

In evaluating the probability in (36) we use the likelihood Iy (6y, 82, « -, 8,|0) derived in
(6). The integral can be determined by first integrating out the variable 8,. Thereafter
application of theorem 4 in the form of J(j,n — 1,z,y) leads to the required result.

Again we will use the shorthand (N — 1), to denote (N —1)+++ (N -1 -n+1).
n-1
Pr ZD(<$02D¢<yﬂz’<le<y ZD{
i=1 =1 N i=1
h :_E{-‘ 6‘ V"Etas 6‘ y-Etnl ¥ 7
= o f o (6162, 8al6)dba - iy

Sj41=20 6.::—2::: 8

* =i 4 t-u" =-Tine (N=1), Li-1 6 N=n-1
fsmo ./6 »/;3+|=0 /5.,:‘_5:;—': & (NO)“ 1= N6 d&.. . .d6|

= z-E“. § ‘L 2'_’6 - Nen
+[s.~o -/6 - ‘/,.":.0' ‘&”./:_,_; 'L%}b“)l?.‘:i“[l N&] -1 - ~dby
({50 B )

n-1 No i-1 No

z Ne=n y N=n
‘{[‘“m "[1*;\7‘5 }

j€n=-1jn=1,...,N,z2<y<Nb z2,y€eR,. (W]

#

i
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Theorem 8

1 N
NZD]:H}:

lim Pr{ZD; <z
N =1

~-Lrwll {5 @)

n=1,2,..., which is the gamma distribution in z with parameters n and 1/9.

Proof:
Follows from theorem 3 by evaluating the logarithm in the expression

-2 N z
ol = {5}
with a Taylor series and taking the limit of N to 1infinity. (u ]

Theorem 9

n~-1

Jim Pr{ZD;<znZD;>:c

=1 =]

ZD: }

L-l

cg i e {3

n=1,2,..., which is the poisson density with parameter /6 and ezpectation (z/0)+1.

Proof:
The proof follows from theorem 2 in a similar way as the proof of theorem 8. o

Theorem 10

lxm Pr{ZD, <:anD; <y

2}

D
N,{{'}

,i:(z-x)![o a wo{-51+

I A

j€n-1,jn=12,...,2<y,2,9€R,. (39)
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Proof:
The proof follows from theorem 6 in a similar way as the proof of theorem 8. a

Theorem 11

n-1
hm Pr{zD; <zny D <yﬂZD¢ >y
=1 =1

yEn-o}

L-l

- (- 1)'{[3’]“—l il(?::) 2%in']w[ja;]'_l}exp{-—%}, (40)

j€<n=-1L43n=12,...,z<y, 23,9€ER,.

Proof:
The proof follows from theorem 5 in a siwmilar way as the proof of theorem 8. n]

Theorem 12

r-1
Jim Pr{Z:Dz <zn), D <yﬂ*<ZDc <y
{=1 [}

ZD: }

B
fol3)-ee ) '

J'(“""ljn""' 1"» .SSy.zﬁyGlh (41)

Proof:
The proof follows from theorem 7 in a similar way as the proof of theorem 8. 0
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